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ASYMPTOTIC ANALYSIS OF LONGITUDINAL
AND BENDING WAVES PROPAGATED IN A SYSTEM
OF TWO PLATES FASTENED AT AN ANGLE

E. V. Mikhailova " UDC 517.9 :624.07—415

1. We introduce two coordinate systems so that in the left plate x; = 0 while in the right x, =0 (Fig. 1).
The z, and z, axes are here directed normally to the plate surfaces so that the twohali-planes (zy =0 for x; =0
and z, =0 for x, =0) would coincide with their neutral planes. The y axis is along the line connecting the plates.
Let an incident sinusoidal wave be propagated in the left plate. We examine the conditions for its passage
through the boundary.

The plate vibrations are described by the following differential equations

D(0%w/ozt 1 204wloz0y? + *wloy®) + phd®wl6i® = 0; .1)
ER am 1—vdu 14y o \ _ , 0%,
1— " ( +3 a2+ 2 dx@y)_ph_az_z’ (1.2)
Bh [1—v o %  1tv d%u 8% -
—_—— |y — T — = | =ph— 1.3
1— vz( 2 a2 ' oyt 2 dzdy ) o’ @.3)

where h is the thickness of the plates; E, elastic modulus; v, Poisson ratio; and D, bending stiffness.

Displacements vy, v, of points of the plate neutral planes along the y axis during vibrations uy, u, along
the x4, X, axes will characterize the wave in the planes of the plates while the displacements w,, w, along the
Z4, Xy axes, respectively, are bending waves [1, 2].

Solutions of the problem should satisfy eight boundary conditions on the hinge-supported edges
w=u == vy = *wloy* = 0 (y = 0, ) 1.4)

and eight juncture conditions on a common edge & =0)

Uy = 1,008 ¢ - wysin @; 1.5)

wy = —uysin ¢ -+ wycos ¢; 1.6)

O /0y == Ow,ylday; ) 1.7

0y, = Oy, COSQ -+ R, sin g; (1.8)
B, = —0,sing+ Ry, cosq; _ 1.9)
My, =M,; 1.10)

Dl = Uy; (1 '11)

(1.12)

Txly = Tx2y1

where ¢ =r—a (¢ is the angle between the plates), Ox; are the normal stresses, 7x;y are the shear stresses,
My, are bending moments relative to the x =0 axis, Qx; + OMx, y/ ay Qx; s the transverse force, Mgy is the
torque), i =1, 2.

2. Let us first consider the particular case of the plane problem (f=«), Then v =0, the solutions are
independent of the variable y and the boundary conditions (1.4) drop out.

The juncture conditions on the common edge have the following form in this case

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi FlZikl, No. 5, pp. 153-160,
September-October, 1982. Original article submitted December 26, 1980.
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Fig. 1
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1
2 2 2 2
1—v] 0z] 1—v; Oz,

1_vi01:1—.1__/v;t712

% cosp,

Let us reduce (1.1)-(1.3) to dimensionless form. To do this we introduce the dimensionless coordinates
£ =x/hy, 1 =y/hy, the dimensionless variables u*=u/hy, v¥=v/h;, w* =w/h;, and the dimensionless time

T = ctlhy = VEE — vi(tlhy).
We then obtain (for each of the plates)

621;* + {—w 6211;* + 14v g%+ _ ur . @.1)
9t 2 ot 2 agdm a1’
1— v 3%+ %r 4y dfux av* 2.2)
2 gt 2 2 9gm T ot @.
13 an ] T
AAw* 4 12(hy /1) 20%0* |62 = 0. 2.3)

Here k=1 or 2 depending onto which plate we apply the equation Aw* = g2w*/9E2 4 o%w*/an2.

We write the plate juncture conditions in the case E; =E2, V{ =V, as

u; = us cos o+ ws sin P; 2.4)
w; = -- uj sin @ -+ Wy cos @; 2.5)
aw:/a§1 = 0w/ 0%s; 2.6)
* * ; 3 53 %
3 % * 3 3 % ’
o aa:{ = Z_: ‘;Zz sin g + 5 (%) —%—:;— cos ¢; 2.8)
*w} by \® #*w)
ol = es)
Let the incident waves have the form
w* = wheioriE), 2.10)
u* = u;}ei(“’"_“:gl), 2.11)

where o* = (-2 —-1—_—_; , W* . u* are dimensionless input amplitudes
¢ |V 01° 7 ot
* *
Wor = Wor/hyy  Uor = Up/By
fwe consider the amplitudes wy;, Uy given).

Part of the wave being propagated over the left plate will pass through the edge to the right, and part of
the wave will be reflected backward.

For the left plate the reflected bending wave has the form
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W = w:ei(m*ﬁ—v;&l) + w:evigleim*f, @.12)
where the first term is a harmonic wave and the second is an edge effect.
The longitudinal reflected wavé has the form
U= u;kei("’*”“:gl), 2.13)
For the right plate we have
w* = w;ei(m*r~v;§2) + w;*e’vzgi'ei‘“*f, wF u;ei(m*'r._a;g’). 2.14)

The values of vyfg, al’g are found from (2.1) and (2.3) upon substitution of solutions in the above~mentioned
form: : '

— /%
Th =f/12]/-7;-c0*, ap =op (k=1,2).

Substitution of 2.10)~(2.14) in (2.4)~2.9) yields the following system of six linear equations @with six
unknown dimensionless amplitudes w*, wi*, wy, wi*, uf, uf):

ué'x 4+ ui = uy cos ¢ -+ (ws + w;*) sin @5 2.15)
w01+w1 +wt = — 2 sin @ + (wh + w, )cosq;, (2.16)
7 (— gy + iw; + w,") = s (— i} — w, *); @.17)

* .k . % k, ,
oy (— iugy + iug) = — oy (hl ) iu; cos ¢ + 4 ( *)3( ) ( iwy + wy') sin ; 2.18)
71_97 (vi')” (— iwgl + iw: — w’l') = oa* (: ) zu2 sing + vl (y2)3 ( ) (-— sz + UJz )coS (U @.19)
('\h*)2 (— wz‘l — w: 4 w/:) = (y ) ( ) (-— wz + w )- 2.20)

We shall seek the asymptotic solution of the system (2.15)-2.20) under the assumption that the angle @
between the plates is not small nor close to 7.

Let us introduce the parameter k= VoF = — V --———, which is henceforth considered small. Let
¥z

us use the notation hy/c =Ty, 21/w =Tw' The smallness of the parameter k means that the time for the wave
to pass the distance h is much less than the period 2r/w. .

After dividing both sides of (2.19) by the quantity a;*h,/h;, we obtain
1

A M ; ; R, \1/2 ,
"‘)*1/2 [— 1wy + iw} — wi*] = iufsing + —— Ty (-l) 0*1/2 (— iw; + w,"),
;/ Bk Y1

from which there follows in the zero approximation ¢/w* =k=0)
' u; =0 (sing=£0). ' 2.21)
Dividing (2.18) by al* and taking (2.21) into account, we obtain

. R 1 Ry \372 . % .
— iugy + iUy = ——— (‘52‘) 0" (— iw; + w,)sing,

y\n
from which
, u; = Ug. (2.22)
Taking account of 2.21) and 2.22), equations (2.15) and (2.16) are converted as follows
wz =—w; + sin q) uo1; 2.23)
W' = —wy —w; + 2%}% Ugy. 2.24)

Substituting @ 23) and (2.24) into @2.17) and (2.20), and transposing theterms containing the known dimen~
smnless amplitudes ‘101’ wM to the right side, we obtain a system of two linear equations with two unknowns
w;*, w,', whose solution has the form
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P s O S S W
N

5/2 s 1
e I [
w.* = e -———l_._ * + u*
2 Ry \572] Yo 73 01-
[ (w)7] ()]
Therefore, in a zero approximation the longitudinal wave is reflected entirely from the rib as from a
free edge and is returned backward; it here generates two bending waves. The bending perturbation generates

just bending waves, where the transfer of the perturbation from the bending wave is independent of the angle
between the plates (under the assumption that ¢ #0, ¢ # 7). The solution is independent of the vibration fre~

quency w. For ¢ =7/2 we have
h 5/2
[1 +i ( ) ]
* 1 *

e GTT

2=-_ A 5,2 1—[————W u;huI:u(Thu::O-
[“f(h—) NESE

3. Let us examine the question of the transfer of wave energy. We write the formulas describing the
wave moving in the x direction

?“I
()

w = wysin (6t + yz), u = uysin (0t - az). 3.1
We take the bending wave and we compute the kinetic and potential energy on some of its length
25

0 2,
z

= ,[ (we)?ds = phkh j. (we" phhghlﬂz lwg 2 (w2 =,
¥

_ D w \2 phie® Y w* PR | s ma m
1, - ff(ﬁ) ar= i (S ) oo = Bt P 2
3 s*

k=1,2, s* = s/h,.

Substituting (3.1) (in dimensionless form) into (2.3) yields the relationship (y*)*=12 (h,/hk)’ w *)? which means
that the kinetic energy of the plate bending wave equals its potential energy Ty = Hu.

E can be shown analogously that 7y =II,.
Now, in order to verify satisfaction of the energy balance Ey=E; +E,, it is sufficient to show that T;=

i *e)
For simplicity, we consider that only the bending perturbation w* — w}e (wrrr8) is delivered to the left
plate. ’

In the zeroth approximation this wave generates only bending waves with the dimensionless amplitudes
Wi s w2 » Which are determined from the formulas

h2 5/2 h,2 1/2
) [1+i('}q) ] oo (’1—1)(‘;71‘ .
W, = — Iy \572 Wy Wy = — —’}12—5/2w°1'
14+ [ 22 14 (2
= (w)7] [+ (52)"]

Let us examine the reduced (dimensionless) kinetic energy of the plate bending wave. To do this, we
divide Ty by the quantity pc*h}

e, 1 hk * 17 o T
Ty =5 7w [ (%) =, k=t,2.
P 1 'Yk
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The energy T?O = -i—-l wor | {0#)? * » was fed to the edge along the left plate, while the energy

Tw=Tw1+1w.3= ; lwllz(m*) AL AR —}f

2

. o |: h-z, 5/2 3+2 h-g h_z 3/2
) w2 AT (T) T(‘h‘
i+ 32 : \

I w:1 lz = l wZ'I ‘2~

Therefore, the energy balance is satisfied.

h, \ 3/
Let us designate the quantity (f—) 2|w;‘ 2 the amplitude coefficient of bending wave energy passage, and
1

the quantity |wi|? as amplitude reflection coefficient:

3/2 .
Kpa =( ) [wsl’, Kieg —|w1| a +Kef =1
(such an input perturbation wy is taken that fwg |®=1).
In order for the major part of the energy to be reflected from the edge, the condition Kpaw > Kpaw or

[1 _ (%)mr> o must be satisfied.

Therefore, in a zeroth approximation (k=0), when the plates are of identical thickness, half the energy
passes through the edge; if the plate thicknesses are distinct, then the major part of the energy is always re-
turned ¢he assumption that the angle between the plates is not small and close to 7 is retained).

Limit cases: 1. The right plate is much thinner than the left hy/hy —0, then Krefw = lwl {2~ 1, Epaw~
(halhy)5i2 - 0, i.e., in practice all the energy is returned backward (Fig. 2).

2. Left plate is much thinner than the right
hllhz -0, Krefw ~ 1, Kpaw ~ (hl,lh.z)a’lg - 0.
In this case almost all the energy is also returned backward (Fig. 3).

If the angle between the plates is @ =1 (¢ =0), then the zeroth approximation yields the following expres~
sions for the amplitudes

R S G I
T T & T T T

Here Kpefw =0, Kpay ~1 for plates of identical thickness, while if hy/hy =0 or hy/hy =0, Kpefw ~1,

K paw —0-

4. Let us turn to the general case when vibrations occur in all three directions. The wave in the x axis
direction {in dimensionless form) is described by the formulas

u*(E, 1) = u*sin A*n sin (@*§ — ©*1); “.1)
v*(E, ) = v* cos A*n cos (&*E — w*T); “4.2)
w*(&, 1) = w* sin A*n sin (P*E — o*1), “.3)
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where A * =)xhy, and the parameter A is such that an integer number of half-waves ] (r/A)=n is packed along a
common edge of length 7, where n is an integer.

Substituting 4.3) into 2.3), we obtain
(v + A" =12 (hy/hp)?0**, k= 1,2, where V)3, .= = _h}_]fw 0¥ — )"

Substituting @.1) and @4.2) into 2. 1) and (2.2), we obtain a homogeneous system of two linear equations
with two unknowns u* and v*:

( + 1;" hg— m*z) u¥ — —1—_21_\’—06*)»*0* =0, — .3.;5_” a*hEu* (i.zi_" o LA m”) o =, @.4)

The equality of the determinant of this system to zero yields a quadratic equation in w *%;
(@%92 — [(3 — v)/21{a*? -+ M*9)0*2 -+ [(1 — v)/2] (%2 + A*2)2 = 0, 4.5)
Equation (4.5) has the roots

: (@%%); = a*? - A%, (@*?), = [(1 — v)/2](a*? - A%2), 4.6)

where the solution of the system ©.4) u* =a@*, v* =—x* corresponds to the first root, and u* =)k, lw = a*.
to the second. We have from .6)

(@*2); = *2 — A¥2 (@*?), = [2/(1 — v)]o%2 — Ars.
Let us introduce the notation

92 = % = (/W) V1207 — 422, (/1) = —(p2); = (b)Y T20* + 472,
(a*)E == __(a*‘.’.)l = A*2 __ (ﬂ*‘.!’ (DL’*)z = _(a*i)z = A%*2 [2/(1 —_— V)]mtﬂ,

if
(h/he)V1Z0* > A%2, ©* > A%, 4.7)

then v *, 4t* are real and @*, a'* are pure imaginary. We consider that just the bending perturbation w* ==
sin A*nwy; 0" =¥1%) with the givenamplitude wy; g5 =Wy/hy) is delivered to the input. We write the solution
at the output in the following form:

Left plate

* %
. T T B e 51]
w*=s1n7»*n[ le( Twye ,
* 0%t “151 ,

£
e i0¥*T @y 51]
u¥ = sin A% [ulocle e 4 u; A*e e

1

* %
Fal*1 a1 E re 1y 1Q%T @y §
[ulle e 1R gt e T e B

Uv¥ = cos A¥1 @



Right plate

v U OXT P, § ’ wr.’s
w*——sm}v*qlu e( r”)J—z,*e * ’],

F . * % i@¥r a§ uu*t —-a
u* = sin A¥n [-— usoipe e 20y *ike 2 ga]”

* iw¥y -—a. ty 1y l0¥FT -—tz g
v*=cos}»*n[u2k*e e z”znzoz*a‘*e e ° z],

hence, the wave occurs in the same domain where condition @4.7) issatisfied. The solution in the above-men-
tioned form satisfiesthe eightboundary conditions (1.4). Substituting this solution in the juncture conditions on
a common edge (1.5)-(1.12) (in the zeroth approximation) under the assumption that ¢ ~0 &%), r—g) ~0)k%, we
obtain that the bending perturbation generates only bending waves with the amplitudes '

{0+ oo+ () 160+ Gyt +

T e (&l as
{ L)+ (*)2]\:;+(%)3[(Y;)e+(vé*)2m} |
Feflo GO (B I ],

w = — 2“[(\’?)2 ()’ \»; i

Wp1s
+i{[(v’f)2+(v Ve () Lo (Hvi}
which are independent (as in the plane problem) of the angle between the plates.

f we set yjf ='yi'* =({=1, 2) (A =0), which corresponds to the case when there are no vibrations in the y
direction (infinitely wide plates), then @.8) is reduced to the same results as in Sec. 2.

Executing calculations analogous to the calculations in Sec. 3, we obtain that even in this case the kinetic
energy of the plate bending wave equals its potential energy:

* ' 3 i I

Tw:nw=—-— oy [0 S g B =12 K = lui Fy
Ve

ey = (1) B B0

All the exposition above is true for vo*« 1,

Graphs of the dependences of the bending wave reflection and passage coefficients on the ratio between
the plate thicknesses are given in Figs. 4 and 5 for different values of the parameters w* and x* (Fig. 4: w*=
0.01, line 1) A* =0.005; 0,009; (Fig. 5: w* =0.1; line 1) A* =0.09, 2) A* =0.005; 0.009; 0.02). I is seen from
Figs. 4 and 5 that the curves differ negligibly from the curves in Fig. 2.

Therefore, if the parameter w* is sufficiently small, the plane problem, which is simpler, can be con-
sidered instead of the general case.
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